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ABSTRACT

EO/IR/Laser detection of a target amidst clutter/background is a difficult problem often treated with simplistic
models. Unlike noise, clutter is more complex, neither spectrally white nor statistically Gaussian. Therefore, it is
insufficient to lump clutter with noise and use standard detection curves. Using current target detection models, it is
extremely difficult to perform effectiveness assessments of signature management technologies for survivability of military
ground vehicles. Current models do not consider the vehicle on a component-level basis and do not account for artifacts
introduced into images from aliasing and varying amouats of clutter. Algorithms must be developed that quantify the
effects of random backgrounds on the imaging capability of electro-optical systems to improve false alarm rates. Current
trends dictate that EO/IR/Laser imaging systems must consider developments in signature management technologies and
countermeasures that are driving clutter magnitudes higher than target signature magnitudes. These trends make the
problem of target detection in clutter especially critical. Battelle has produced image randomization software called
BATRAN (Background and Target Randomization) which computes various types of statistical distributions to randomize
background and target pixels separately. The types of statistics implemented include exponential, Gaussian, log-normal,
and Rice distributions for both the background and target. To generate synthetic images to assess the detection
performance of thermal imaging systems and countermeasured platform signatures, a method to characterize the
background and target is required so that their signatures can be statistically matched. Current methods use an area-
weighted average temperature difference (AWAAT), which is regarded as inadequate in representing observer’s sensitivity
to the inherent detection cues of the target/background/clutter signatures. In an effort to identify a more robust and
accurate AT metric definition for background and target matching, Battelle also developed a new AT metric definition and
its equation using RMS pixel-based higher order statistics for the background and target signature pixel data in a scene
image. This new AT metric provides a better estimate of true signature difference between the background/clutter and
target, enabling more accurate matching of the background/clutter and target for use in sensor detection performance
assessment,

1. INTRODUCTION

BATRAN, a software package produced by Battelle, randomizes each background and target pixel in an input scene
image. The randomizing distribution of the background and ta.zet pixels can be different. The properties of randomizing
statistical distributions are provided as a priori distributions. A method to randomize pixels in an image is also provided.
Output images from BATRAN are presented along with inherent input images. The output images are randomized with
various pairs of randomizing distributions. These output images are then used for AT analysis.

Currently used AT metric definitions and their equations!>® are not proper representations for describing
temperature varying features of a target and/or its background. Some AT metrics oversimplify the effects of these features
and misrepresent the apparent temperature difference which provides an inherent detection cue of
target/background/clutter. Other AT metrics treat the pixels from a target and its background in a sensor image as if they
come from two separate images, which ignores a relative temperature apparentness of the target and its background.
These facts inadequately represent a human observer’s sensitivity to the detection of target from background and clutter.
Therefore, these problems associated with the currently used AT metrics necessitate the development of a new AT metric
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definition and its equation. In this paper, a new AT metric is defined. An equation representing this new definition is then
derived. This new AT equation is implemented in BATRAN along with other AT equations with which the new AT metric
is compared.

The remainder of this paper is organized as follows: Section 2 discusses the theory of the background and target
randomization algorithm implemented in BATRAN including the a priori distributions and the pixel randomization method,
and presents the randomized output images; Section 3 discusses the new AT definition and its equation derivation, and
compares the new AT metric with other AT metrics; Summary and conclusions are given in Section 4; Section 5 contains
acknowledgements; and, Section 6 lists the references cited during this research performance period.

2. BACKGROUND/CLUTTER AND TARGET STATISTICS MODELING FOR RANDOMIZATION

This section discusses the theory behind the background and target pixel randomization algorithm and its
development and modeling in BATRAN. The various statistical distributions available for the background and target
randomization are provided by their probability density function (PDF) and cumulative distribution function (CDF). The
random number generation from a desired statistical distribution using the inverse transform method is presented. To
assure that the generated random numbers represent the desired statistics, BATRAN-simulated PDF and CDF are
compared to the calculated (or exact) PDF and CDF. Finally, the BATRAN-randomized output images are displayed to
show effects of the randomization by different statistics on a couple of input inherent images.

2.1 Properties of a priori distributions

The statistical distributions available for image randomization in BATRAN are exponential, Gaussian, log-normal,
and Rice. Because these distributions are not derived from a physical description of clutter, they are referred to as a priori
distributions. These are expressed by a PDF and a CDF, denoted by p(x) and P(x), respectively. For a priori distribution
equations presented, y and o denote the mean and standard deviation of the distribution, respectively. Another parameter
provided for the log-normal and Rice distributions is the standard deviation-to-mean ratio, denoted by R.

2.1.1 Exponential distribution

The PDF and CDF of the exponential distribution are given in (1.a) and (1.b), respectively. P{x) is the definite
X
integral of p(x), P(x) = f p(t)dx.

px) = lexp(-i) @; Px) =1 - °@('£) ®) (D)
m m m

2.1.2 Gaussian distribution

The Gaussian PDF is given in (2).

= 1 _(x'll)z (2)
o - e 2]

Even though there is mo analytic closed-form expression of the Gaussian CDF, it can be expressed by using the error

function, Z(x) = zl_—exp(—‘—:). Integrating Z(x), the error function’s CDF is obtained as indicated in (3).
n

P,(y) = - jexp{—-‘f}dt s j{zmd: &)

Applying (3) to (2), (4) gives the Gaussian CDF in terms of the error function’s CDF, Py(y).
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The Gaussian CDF can be then represented as in (5), which is the error function’s CDF approximation. This equation is a

polynomial and rational approximation®.

P(x) = Py(v,1) = 1 = Z(v)(b,1 + byt* + byt® + bt* + bst’) + €(v) &)

where v = Z2*% and ¢t =
g

ot The error term is bounded such that |e(¥)| <7.5X 10, The coefficient values in (5) are
> qx
b;= 0.319381530, b, = -0.356563782, b; = 1.781477937, b, = -1.821255978, b; = 1.330274429, and ¢ = 0.2316419.

2.1.3 Log-normal distribution®%’

The PDF of the log-normal distribution is given in (6).

1 [log,(x) -m, P 1 1] {x)r
) = exp{- = expl- log | = 6
P \/thx XP{ 201211 } V2ro, x { 2o;l : m

Since the log-normal distribution is a Gaussian distribution with the natural logarithm of random variables, (5) is
_ g ()-my,

used with v = o to obtain the log-normal CDF. This is because the log-normal CDF can be written as (7).
logx-my,
o 2 logx - M
- L [ __fc_)dk=,,z_sé__mh
V2r . 2 O

Terms in (7) are oy, = log,(0) = standard deviation of log,(i), and m, = log,(m), where m is the median of x. The
mean-to-median ratio (M = u/m) of x is related to the standard deviation as in (8).

1

o = [2 xloge(M)]% = [2 XI°8¢(£)]% = [2x{log, (1) - "‘1.}]; 8

The median can then be found by solving (8) when the mean and the standard deviation are given for the log-normal
distribution as shown in (9).

2
m,, = log,(m) = log () - % ®

The standard deviation-to-mean ratio (R) is expressed in (10.a), which can be solved for the standard deviation
when R is provided as indicated in (10.b).

R=ye™ -1 (a); o, = fogRE + 1) (b) (19)

2.1.4 Rice distribution®®

The PDF of the Rice distribution is expressed in (11), where I {a) is the zero-order modified Bessel function of
first kind. The standard deviation-to-mean ratio (R) is expressed in (12.2). When R is given, the dominant-to-diffuse ratio
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(r) can be expressed as in (12.b). The dominant-to-diffuse ratio is the ratio of the single dominant scatterer signature to
the total signature of the small scatterers.

p(x) = liexp{-r-(l +r) —1—7} Io( r(l+n 5)
B B J B

r=-g+gx@-1)

(11

1 +2r
1 +r

R = (@; ®; g=1-R? (o) (12)

Numerical integration of the Rice PDF is necessary to obtain its CDF because there is neither an analytic closed-form
expression nor a polynomial approximation of the Rice CDF.

2.1.5 Distribution example

Figure 1 shows an example of the four distributions defined above. Shown is each distribution’s complement

X
cumulative probability (CCP), 1 - f p(t)dt. Each distribution has a mean of 102, The second parameter of each

distribution is shown in Table 1.

24 = Stondard Deviation—to—Mean Ratia Table 1. The value of the mean and the second
-1, D20 = Dominant-to-Oiffuse Ratio
oo e parameter.
S \‘\\
Q‘) 107! o
© g0 k
N ! | Distribution Mean Second parameter Input to
1
2 ' type BATRAN
T:; 0~ ‘ ". .|
R Co Exponential u =102 N/A u =102
a '
r ‘ ! . - -
s v Gaussian u =102 g =107 o =103
:g o oot “Lg'g:')"ﬂe:' AP so:;“ S2M=5 2
------ 0 y: .01, Medionw1. , 9=6.0852N= = 10" = =
E o - : ::dom \020=10.98, S2M -acu A Log-normal p=10 3 o =608 k=590
3 HLAST PR - (m = 1.96 X10° (or 0y, = 1.805)
TR - L S S or my, = -6.2343)
10 w0 0 R 13" N‘ b )1(0 10! 10°?
andom umber
Rice u =107 r = 10.9782 R=04

Figure 1 Example of cumulative distributions

2.2 Inverse transform method® (ITM) to randomize an input scene image

The inverse transform method is applied to generate random deviates (or random numbers) to randomize the

background and target pixels using a desired distribution. This process is modeled in BATRAN. Figure 2 is used to
illustrate the ITM implementation in BATRAN with the following steps.

Step 1: Generate a desired CDF either analytically or numerically, which is denoted by P(x) and represented by a
solid line in Figure 2.

Step 2: Generate uniform random deviates between O and 1, which is denoted by y.

Step 3:

With P(x) and y, one-to-one matching of y and x can be performed using P(x) to obtain x, which is a
random deviate from the desired distribution.

Applying ITM to an input (inherent) scene image, pixels are randomized with a desired statistical distribution. It is known
that a pixel belongs either to the background or to the target prior to the randomization. Therefore, the background pixels
can be randomized by one statistical distribution and the target pixels can be randomized by another distribution. The
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random numbers, which may represent
fluctuations in temperature, intensity, or
f‘adiance, are generated and added to'the P(s) = Cumlative Diszibotion
inherent background or target pixel Punction (COF)

values. - fp(x)dx
[]

2.4  Comparison of exact distribution Inpat: y
and the BATRAN generated ¥ it uniform deviske:
distribution Uniformly distributed

between 0 aad 1

Y

In this section, random variates .
generated (or simulated) by BATRAN are /V
examined to determine whether they p(x) = Probability Deasity
closely follow the selected distribution by Runction (PDF)
comparing them to the exact (or 2 E
calculated) distribution. Figures 3, 4, 5, .
and 6 show the PDF for exponential, L
Gaussian, log-normal, and Rice '
distributions, respectively. Figures 7, 8,

9, and 10 show the CDF for exponential, ¥
Gaussian, log-normal, and Rice Outpet 1
distributions, respectively. In each figure, Transformed deviate (Random
the solid and dotted lines represent the mumber of 4 desired diebsion

calculated and simulated distributions,
respectively. The simulated distribution is
generated by performing 10° trials. From
Figures 3, 4, 5, and 6, it is apparent that
the number of trials to generate the simulated distribution is 10° since there are no samples taken beyond the PDF of 10°.
It is also noted that as the simulated PDF approaches the tail region of the distribution, it deviates from the calculated
PDF. This is because not enough samples are taken at each end of the tail regions to replicate the calculated PDF.
However, the simulated CDF, as shown in Figures 7, 8, 9, and 10, agrees with the calculated CDF up to the complement
cumulative probability (CCP) of 105, Between the CCP of 107 and 109, the simulated CDF deviates from the calculated
CDF. Beyond the CCP of 10%, no data is available. Figures 3 and 7 show the exponential PDF and CDF, respectively.
The mean (u) of this distribution is 10. Figures 4 and 8 show the Gaussian PDF and CDF, respectively. The mean (y) is
0 and the standard deviation (o) is 20. Figures 5 and 9 show the log-normal PDF and CDF, respectively. The mean (u)
is 5 and the standard deviation-to-mean ratio (R) is 1. From the mean and the standard deviation-to-mean ratio, the
median (m) and the standard deviation (o) are 3.5355 and 2.2992, respectively, using (9) and (10.b). In natural logarithm,
the median (m,) and the standard deviation (o) are 1.2629 and 0.8326, respectively. Figures 6 and 10 show the Rice
PDF and CDF, respectively. The mean (u) of the distribution is 35 and the standard deviaiion-to-mean ratio (R} is 0.5,
From the standard deviation-to-mean ratio, the dominant-to-diffuse ratio (r) is 6.4641 using (12.b) and (12.c). These
figures show that the random numbers generated in BATRAN closely follow the exact PDF and CDF. This not only
verifies that the random numbers are generated with the input statistics parameters, but also validates that they are
generated by the desired distribution.

Figure 2 [lustration of inverse transform method (ITM)

2.5 Output images from BATRAN after background and target pixel randomization

Example output images from BATRAN after randomization were generated to demonstrate the effects of the
randomization with various distributions. A simulated and a measured input inherent images were used for the
randomization. The simulated inherent image is shown in Figure 11. The measured inherent image is shown in Figure
12. The simulated image was generated by the Wright Laboratories Tactical Decision Aid (TDA) model at Battelle. The
measured image was provided by TARDEC. The size of the simulated and measured images were 378377 and
512512 pixels, respectively. Background pixel values of the simulated inherent image were set to zero; therefore, no
difficulties arose in separating the background pixels from the target pixels. However, the measured image had to be
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processed to separate the background pixels from the target pixels. The Geographic Resources Analysis Support System
(GRASS) software package was used to cut out the target pixels from the background pixels. The output image file from
GRASS also had the background pixels assigned to zero.

Figure 11 Simulated input inherent image. Figure 12 Measured input inherent image.
2.5.1 Output image examples with the simulated/measured image

For output images shown in Figures 13-16, Table 2 summarizes the types of statistical distributions and associated
parameters used to randomize the simulated input inherent image. For output images shown in Figures 17-20, Table 3
summarizes the distributions and parameters used to randomize the measured input inherent image. The randomizing
statistics for the target and background pixels are different for each randomized output image. These figures are discussed
in detail using various AT metric definitions in Section 3.3

Table 2 Randomization parameters of BATRAN output Table 3 Randomization parameters of BATRAN output
image using the simulated input inherent image. image using the measured input inherent image.

Simulated
Image

Background Pixel
Randomizing Statistics

Target Pixel
Randomizing Statistics

Background Pixel
Randomizing Statistics

Target Pixel
Randomizing Statistics

Figure # ]| Distribution{ Distribution [} Distribution| Distribution Distribution{ Distribution Distribution
Type Parameters Parameters Type Parameter Parameter
13 Exponential u =10 Gaussian 17 Exponential
14 Gaussian |u=24.45;0= 5|l Exponential u=>5 18 Gaussian u=10
g=10
15 Log-normal u=1; R=0.5 19 Log-normal{u=10; R=0.9|] Gaussian
r = 6.4641 my, =2.0059
9,,=0.7703
16 Log-normal|u=12;R=0.95 20 Rice #=34;R=0.95|] Exponential u =30
m,=2.1633 r = 0.45401
0,=0.8020
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Figure 13 Exponential/Gaussian randomization for Figure 14 Gaussian/exponential randomization for
background/target using simulated image. background/target using simulated image.

Figure 15 Log-normal/Rice randomization for Figure 16 Rice/log-normal randomization for
background/target using simulated image. background/target using simulated image.
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3. A NEW AT DEFINITION

In this section, a new AT metric definition is stated, and the equation based on this definition is derived. This
definition is compared with other AT metric definitions such as the conventional AT (=AWAAT ), the Night Vision
Laboratory (NVL) RMS AT in [2], and the AT found in {3]. The AT results from these various definitions are also
compared by using Figures 13 - 20. The conventional AT, NVL AT, and the AT from [3] are denoted by AT, ., ATy,

and ATy, respectively. The equations for AT,,,,, ATy, and ATy are given in (13.a), (13.b), and (13.¢), respectively.

Ny ;
AT = by -1y @; ATy, = |- 377 - “T)ZT =op (B); ATy = (pr - by + o7 @ @)

NT i=]

where, pr: The mean temperature of the target pixels PT : Each target pixel’s temperature
Nr : The number of pixels on target pg : The mean temperature of the background pixels
oy : The standard deviation of the target pixel temperature

The AT,,,. as shown in (13.a), does not consider temperature varying features on both target pixels and
background pixels. This AT, , definition is an oversimplification of the background and target temperature characteristics.
The ATy, is simply a standard deviation of the target pixel temperatures. No background terms are involved in (13.b)
indicating the background temperature is ignored. The AT} considers the target temperature varying feature by having
or; however, the background temperature varying feature is not considered. It is evident in (13.b) and (13.c) that AT,
and AT; cannot yield a negative AT, a case where the target is cooler than the background. These deficiencies indicate
the need to define a new AT metric that includes higher order statistics of both background and target pixels’ temperatures.

A human operator does not see a separate target or background, but rather sees both at the same time. Therefore,
an overall scene, which includes the target and background, should be involved in defining a new AT metric. This is
because when the overall scene is located far enough away such that the entire scene falls onto a pixel, only the mean
temperature of the scene is realized. However, this mean temperature is produced not only by the background temperature
but also by the target temperature. Therefore, it is adequate to imitate the human perception of the scene by evaluating the
standard deviation of the target pixels’ temperatures conditioned on the mean temperature of the scene (= Oy ¢, and by
evaluating the standard deviation of the background pixels’ temperatures conditioned on the mean temperature of the scene
(= o39). Then, a new AT metric is defined as the difference between the standard deviation of target pixel
temperatures conditioned on the mean temperature of scene and the standard deviation of background pixel
temperatures conditioned on the mean temperature of scene. This is shown in (14).

AT, = 975 ~ Opys (14)
3.1 Formulation of the new AT equation
Prior to formulating the new AT metric equation, the pixel temperature statistics of target/background and scene are

expressed below. (15.a) and (15.b) show the mean and variance of the target pixel temperatures, respectively. The mean
and varnance of pixel temperatures on the background are expressed in (16.a) and (16.b), respectively.

b LS @ e LS - LSRR o 1s)
TN ’ TNV Ny V! T
1 & B 2 1 o 2 2 1 L 3\2 2 (16)
==Y P! () ot = — Y (p? - = — Y (pPY - )
Y27 N, § ! BN, ,.,( ;o) N, ,.,( Y
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where, PT : Pixel temperature on target P53 : Pixel temperatures on background

07-2 : The variance of pixel temperatures on target ‘732 : The variance of pixel temperatures on background
pr : The mean of pixel temperatures on target : The mean of pixel temperatures on background
Ny : Number of pixels on target NB Number of pixels on background

The mean and variance of the overall scene are given in (17.a) and (17.b), respectively. It is noted that N; = Ng + Nr.

1 BrNp + BN,
g = — E P‘S - rr’r B°'B (a)
Ny i3 Ny + Ny an
T 2 o2
N, N, 2 2 2 2 P - )P
11 Qs 21 2,50 2_(“1*"?)"”7*("3*“3)"”’3 .}-:;lI i-Eli
Os = = (Pi 'Ps) == F) -us= - ®)
Ng i3 N i3 N, + N, N, + N
where, P : Pixel temperatures on scene : The variance of pixel temperatures on scene

s : The mean of pixel temperatures on scene Ns Number of pixels on scene (= Ny + Nyp)

Then, op, s and ag¢? can be expressed in terms of up, o7 Npy pg, 05, Nj, and N;. The conditional variances are shown
in (18.a) and (18.b) for the target and background pixel temperatures, respectively.

Ny
1
°§-|s =— Y (P,T - us)z = 0r + pr - 2pppg * Py = —l-[Ngxo; + N:X(ur - ll,)z] (@
Nr i=1 N2
N 5 (18)
1 }
012;|s =.FB z;(PiB - l—"s)z = 0; + Puz! = 2pgHg * P: B #[stxa: * N;x(ps N pT)z] &)
s

Therefore, the new AT metric equation (= AT,,,) is the difference between the square root of (18.a) and the square root
of (18.b). This is written in (19).

AT, = Op5 = Oy5 = [J 507 + Nyx( /Ns oy + Nix( p.,.)z] (19)

In the above equation, it is apparent that the temperature varying feature on the target and background pixels is included in
terms of their variances. Also, the number of pixels on target, background, and scene is also included, which shows (19)
is a pixel-based temperature difference between the target and background. Of course, the mean temperatures of the target
and background are also present in (19).

3.2 Comparison of AT, metric to other AT metric equations

The other AT metric equations introduced earlier (AT,,,,, AT)y;, and ATj;) will now be compared to the AT,,,
metric. The AT, metric is evaluated by the mean temperatures of the target and background as shown in (13.a). It
ignores temperature variations of the target and background pixels. Thus, the variances of the target and background are

zero, 07 = ap2 = 0. Under these conditions, the AT,,, metric reduces to in the AT, metric as shown in (20).

1 1
ATm‘or-O,a.-O = ‘&_[Nax(”r'l‘a) - er(l‘x’“r)] = Tv“'x(Nr"Nx)x(Vr'ux) = By - By = AT, (20)
s s

The AT,,,; metric, as mentioned before, is simply a standard deviation of the target pixel temperatures as shown in (13.b).
It does not consider any background characteristics nor the mean target temperature. These conditions can be written such
as pug = 0y = Ny = pr = 0. Under these conditions, the AT, metric reduces to the ATy,, metric as shown in (21).

Choe
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ATm Bp=0,0,=0 = Op = ATNVL (21)

Ny=0,p,=0

The ATy metric, from the equation shown in (13.c), considers the ¢emperature variance on target pixels but not on
background pixels. It also considers the mean temperature of the target and background as the AT, metric. This

cony
condition can be written as o = 0, which means a uniform background. For this condition, the AT,,, metric becomes

2).

AT, | a0 N °1' M Na I*s)z - Nr("'a - P"T)] (22)

It seems that there is no direct relationship between (22) and the ATj; metric unless some special conditions are
considered. If the mean of the target and background pixel temperatures are the same (u; = ug), (13.c) and (22) become
the standard deviation of the pixel temperatures on the target only, which is the ATy,; metric as shown in (23).

AT, = ATy, = 0p (23)

m|°'=0,l‘r=“. = AT’[” |u7=|l,

If the variance of the target pixel temperatures (67.2) is zero, i.e., a uniform target temperature, (13.c) and (22) become the
difference between the target mean temperature and the background mean temperature. Thus, in this case, AT is the
AT,,,, metric as shown in (24).

AT AT

m|o,=o,a,=o = AT[3]IOT=0 = Al = Br T Hp 24)
Therefore, the ATCMV, ATyy, and AT metrics describe special cases of the AT,,, metric. The AT, metric given in
(19) includes various effects due to the target and background characteristics in a temperature scene 1mage by evaluating a
number of pixels on the target and the background, the mean of the target and background temperatures, and the variance
of the target and background temperatures. The variance represents the temperature varying feature of the target and
background. The AT,,, metric is derived from a conditional standard deviation of the target and background pixel
temperatures on an overall scene as shown in (18.a), (18.b), and (19). However, the other AT metrics are derived by
evaluating the target and the background separately as if they belong to separate images. This is not a correct
interpretation of the image under evaluation, since an operator views the target pixels and background pixels in the
evaluated image simultaneously.

3.3 AT,,, metric comparison with other AT metrics using Figures 13 through 20
Figures 13 - 20 are used to obtain AT values using the AT, , ATy, AT, and AT, metric equations given by

(13.a), (13.b), (13.c), and (19), respectively. Table 4 lists the target and background statistics and ATs of Figures 13 -
16. Table 5 shows the same for Figures 17 - 20.

Using images in Figures 13 - 16, the various AT definitions discussed in Sections 3.0, 3.1, and 3.2 were evaluated.
All of the target and the background pixels contributed to the AT results. Observing Figure 13 and its AT values, it is
difficult to tell which AT represents Figure 13. Nevertheless, the AT above 10 degrees Kelvin seems too high compared to
Figure 13. The AT, seems to be an adequate result for Figure 13. In Figure 14, the background mean temperature and
the target mean temperature were intentionally matched using BATRAN to evaluate the performance of each AT metric.
As seen in Figure 14, much of the target features are buried in the background due to the matching. The AT,,,, is zero,
which is not a true statement because the target can still be detected and recognized. The ATy, and ATy; may be
reasonable only if hot parts of the target are considered. Since all of the target pixels were considered in evaluating AT,
the results from these definitions may not properly describe the image. The result from the AT,,,, metric provides a more
correct representation for the image. In Figure 15, not only were the background mean temperature and target mean
temperature closely matched, but also the background variance and the target variance were closely matched using
BATRAN. As seen in Figure 15, the target image is deteriorating. Except for a few hat parts, most of the target parts

are relatively cooler than the background. The results from the ATy, and AT}; metrics are only the standard deviation
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(0) of the target pixel temperatures, and the results from these metrics are relatively high compared to the image. The
AT, and AT,,,, values are very close to each other. This is because the variance of the background and the target pixels
were matched. These results may not reflect target recognition ability. In Figure 15, human eyes can easily detect and
recognize the target. The AT results using the image depicted in Figure 16 show that the AT,,,,, ATy, and AT, values
are too high, all being greater than 12 degrees Kelvin. The AT,,,, value shows a reasonable result for the image.

Table 4 Simulated image output pixel statistics and
various ATs comparison.

Table 5 Measured image output pixel statistics and
various ATs comparison.

Background
pixel statistics

Target pixel
statistics

Temperature Difference
(ATs)

Messured|| Background || Target pixel

statistics

Temperature Difference
(ATs)

135.76{f 9.45 15.0 ]4.42 17 678.10{|311.34
0.00| 7.76 | 7.76 | 2.70 13 154.06{1314.37
0.03 | 6.10 | 6.10 } 0.05 19 134.24||297.30{124.96]] 0.965
149.72]1 15.75} 12.24| 12.24} 3.77 20 1096.38{1333.98 13.60131.69|34.48] 0.91

Using images in Figures 17 - 20, the various AT metrics are also discussed. The background mean temperature
and the target mean temperature are closely matched using BATRAN in Figure 17. This results in AT,,,, close to zero.
The ATy, and ATy values are the standard deviation of the target pixel temperatures, and their results are too high
compared to Figure 17. The overall target temperature is cooler than the overall background. This is shown in AT, ,
with a negative value. As previously noted in Section 3.0, the ATy, and AT; metrics cannot discern whether the
background is cooler than the target, or vice versa. Figure 18 closely represents the image taken during 30 mm/hour rain
fall.© The BATRAN randomization can be used to generate images which may represent the target and background under
various weather conditions. The AT results from Figure 19 show that the ATy, and AT}, values are too high compared
to the image. Either AT, or AT, value represents a reasonable temperature difference between the background and the
target. The AT results calculated from Figure 20 clearly tell the tolerance of each AT metric. The image may represent
the background and the target under a severe weather condition. The target is barely distinguishable in the image.
However, the AT, ., ATy, and AT[3] metrics yield the temperature differences of 13.6, 31.69, 34.48 degrees Kelvin,
respectively. These unreasonable results were found because the definition of these metrics considers the target and the
background separately as if they belong to separate images. Also, these definitions do not consider the background
temperature varying features in their equations. However, the AT, metric interpreted the image under a severe weather
condition, as shown in Figure 20, quite well.

4. SUMMARY AND CONCLUSIONS

Background, clutter, and target field measurements from EO/IR, ladar (laser radar), visual, and other sensor
systems show their statistics can be represented by the distributions implemented in the BATRAN (Background and Target
Randomization) software, namely exponential, Gaussian, log-normal, and Rice distributions. The background and target
pixel randomization algorithm using these distributions was first developed analytically prior to implementation in the
BATRAN software, which performs the randomization on an input scene image. The background can be randomized by a
statistical distribution which differs from the target randomizing statistical distribution. Also, background and target
randomizing statistical distributions may be the same. The BATRAN software allows for insertion of randomness, which
may represent artifacts due to aliasing, background characteristics, and varying amounts of clutter, into sensor images.
The randomness is produced according to the given statistical distributions so that the randomized image can be used to

* Figure 18 was compared to a real image taken by TARDEC during 30 mm/hr rain fall.
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analyze various detection and ATR algorithms. BATRAN is also able to incorporate weather effects on sensor image if
the weather statistical characteristics are known. With these capabilities, BATRAN is a tool for enhancing the
effectiveness assessment of signature management technologies for military ground vehicles, thus increasing their
survivability.

The background RMS matching with a target was performed with a newly developed AT metric definition. This
new AT metric, denoted by AT, in this paper, performed better than the other definitions reviewed in this paper when
applied to various scene images, both simulated and measured. Once the background/clutter and target statistics are
known, and can be described any one of the BATRAN implemented statistics, the BATRAN software can match the target
signature to the background/clutter well by" adjusting the given target and/or background statistical parameters to provide a
desired temperature difference (AT). Various combinations of background/clutter and target statistics generated the output
images (Figures 13 - 20) from the input scene images (Figures 11 and 12). These output images indicate each
combination’s ability to match a target to the background/clutter to a human observer. Using the AT, metric, the target
and background can be matched not only in their mean temperatures but also in their temperature varying features, i.e.,
variance or standard deviation. This corrects the deficiencies of the existing AT metrics mentioned in Section 3.0. It was
also concluded that the AT, metric gave the best apparent match of the suppressed vehicle with the background.’
Therefore, the AT, metric allows for a more robust and accurate assessment of the detection performance of thermal
imaging systems than the other AT metrics.
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